Introduction to quantum information

WS 2012/13 Assignment 5 12.12.2012

Due date 11.1.2013

Prof. Dr. Wilhelm-Mauch

http://qsolid.uni-saarland.de/?Lehre

Problem 1 Simon's algorithm

Consider the two-bit version of Simon's algorithm with s = 2, specifically f(0) = f(2) = 0 and f(1) = f(3) = 1.

- a) Write out a quantum circuit for the function evaluation, i.e., a circuit that takes $|x\rangle|0\rangle$ into $|x\rangle|f(x)\rangle$. (2 points)
- b) What is the state of the quantum computer right after the evaluation? Is it entangled?

 (1 point)

Problem 2 Quantum Fourier transform

- a) In the quantum Fourier transform, we have bounded the error of estimating a phase factor $\nu \in [0,1]$ that is not a finite-length binary fraction as $p(x) = \frac{1}{4^n} \frac{\sin^2(\pi(2^n\nu x))}{\sin^2(\pi(\nu x/2^n))}$ where n is the number of digits of the binary and $\frac{x}{2^n}$ is the estimate of the frequency, hence $|\phi| = |\nu \frac{x}{2^n}| < 1$. Plot this function for $\nu = \frac{1}{3}$ and n = 2, 10, 100, 1000 using a computer. (2 points)
- b) Much of the simplicity of the phase estimation circuit comes from the fact that a frequency eigenstate encoded by a single binary number is non-entangled. Consider the case of a 2-bit quantum Fourier transform running on a frequency input state of the form $(|01\rangle + |10\rangle)/\sqrt{2}$. Applying the 2-bit quantum Fourier transform, is the output an entangled state?

Problem 3 RSA and number theory

- a) Prove that $xy \mod N = (x \mod N)(y \mod N) \mod N$. (1 point)
- b) Using a computer, analyse the periodic function $f(x) = b^x \mod N$ for N = 1023 and b = 99. Find the period of the function. (1 point)
- c) Verify $a^{(q-1)(p-1)} = 1 \mod(pq)$ for p = 7 and q = 11 and a = 15. (1 point)

d)	*	You	want	to en	code	text	given	${\rm in}$	7-bit	ASCII	code.	Find	a	suitable	${\rm choice}$	of	coding
	n	umbe	ers. Ex	plicit	ly en	code	the st	rin	g 'Uds	s' using	g this	code.				(1	point)

e) * Choose two random 7-digit numbers and apply the Euclidian algorithm to find their greatest common divisor. (1 point)

^{*}This item is extra credit.